Strongly consistent nonparametric forecasting and regression for stationary ergodic sequences
نویسندگان
چکیده
Let {(Xi, Yi)} be a stationary ergodic time series with (X, Y ) values in the product space R ⊗ R. This study offers what is believed to be the first strongly consistent (with respect to pointwise, least-squares, and uniform distance) algorithm for inferring m(x) = E[Y0|X0 = x] under the presumption that m(x) is uniformly Lipschitz continuous. Autoregression, or forecasting, is an important special case, and as such our work extends the literature of nonparametric, nonlinear forecasting by circumventing customary mixing assumptions. The work is motivated by a time series model in stochastic finance and by perspectives of its contribution to the issues of universal time series estimation.
منابع مشابه
Nonparametric inference for ergodic, stationary time series
Nonparametric inference for ergodic, stationary time series. Abstract The setting is a stationary, ergodic time series. The challenge is to construct a sequence of functions, each based on only finite segments of the past, which together provide a strongly consistent estimator for the conditional probability of the next observation, given the infinite past. Ornstein gave such a construction for...
متن کاملNonparametric Learning Capabilities of Fuzzy Systems
Nonparametric estimation capabilities of fuzzy systems in stochastic environments are analyzed in this paper. By using ideas from sieve estimation, increasing sequences of fuzzy rule-based systems, capable of consistently estimating regression surfaces in different settings, are constructed. Results include least squares learning of a mapping perturbed by additive random noise in a static-regre...
متن کاملA consistent deterministic regression tree for non-parametric prediction of time series
We study online prediction of bounded stationary ergodic processes. To do so, we consider the setting of prediction of individual sequences and build a deterministic regression tree that performs asymptotically as well as the best L-Lipschitz constant predictors. Then, we show why the obtained regret bound entails the asymptotical optimality with respect to the class of bounded stationary ergod...
متن کاملCompression - based methods for nonparametric density estimation , prediction , regression and classification for time series
We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...
متن کاملN ov 2 00 7 Compression - based methods for nonparametric density estimation , on - line prediction , regression and classification for time series
We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0712.2592 شماره
صفحات -
تاریخ انتشار 2007